လီယွန်ဟတ် အွိုင်လာ
လီယွန်ဟတ် အွိုင်းလား (တမ်းပလိတ်:Lang-en၊တမ်းပလိတ်:Lang-de၊ တမ်းပလိတ်:IPAc-en;[၁]တမ်းပလိတ်:IPA-de)သည် ဆွစ်လူမျိုးဖြစ်ပြီး သင်္ချာ၊ ရူပဗေဒ၊ နက္ခတ္တဗေဒ၊ ယုတ္တိဗေဒ၊ အင်ဂျင်နီယာပညာရပ်တို့ကို တတ်ကျွမ်းသော ပညာရှင်တစ်ဦးဖြစ်သည်။ ထို့အပြင် သူ၏ ဂရပ်သီအိုရီနှင့် ကဲကုလသင်္ချာဘာသာရပ်တို့တွင် ထုတ်ဖော်ခဲ့သော သီအိုရီတို့သည် ယနေ့ခေတ်တိုင်အောင် လွှမ်းမိုးမှုရှိနေသော ကြီးကျယ်သော သီအိုရီများဖြစ်ကြသည်။ ထိုမျှမကသေး သူသည် ကိန်းသီအိုရီနှင့် တိုပေါ်လော်ဂျီအစရှိသော ဘာသာရပ်တို့တွင်လည်း များစွာသော ဥပဒေသတို့ကို တွက်ထုတ်ခဲ့သေးသည်။ ယနေ့ခေတ် သင်္ချာပညာရပ်၏ ဝေါဟာရဗေဒနှင့် သင်္ကေတများစွာတို့ကိုလည်း သတ်မှတ်ပေးခဲ့သေးသည်။[၂] သူ၏ ရှေးရိုးစွဲရူပဗေဒ၊ အလင်းသီအိုရီ၊ ဖလူးဝစ် ဒိုင်းနမစ် (Fluid Dynamics)၊ နက္ခတ္တဗေဒနှင့် ဂီတသီဝရီတို့တွင် ကြိုးပမ်းအားထုတ်မှုများသည်လည်း ထင်ရှားလှသည်။[၃]
အွိုင်းလားသည် ၁၈ ရာစု၌ ပြောစမှတ်တွင်လောက်သော သင်္ချာပညာရှင် တစ်ဦးဖြစ်ပြီး သမိုင်းတွင် မှတ်တမ်းတင်ထားရသည့် ပုဂ္ဂိုလ်များထဲက တစ်ယောက်ဖြစ်သည်။ ထို့ပြင် ယခုချိန်တိုင်အောင် သင်္ချာပညာရပ်တွင် စာမှတ်တမ်းတင်ရေးမှု အများဆုံးသူ တစ်ဦးဖြစ်ပြီး သူ၏ စာအုပ်များသည် အတွဲ ၆၀ မှ ၈၀ အတွဲထိရှိခဲ့သည်။ (ထိုစာအုပ်များကို ရှေးယခင်က စာအုပ်ချုပ်သည့် အရွယ်အစားဖြင့် ရှိခဲ့ပြီး ယနေ့ခေတ် ခန့်မှန်း A6 ရှိသည့် အရွယ်အစားပုံစံဖြစ်သည်။)[၄] သူ၏ လူငယ်ဘဝကို ရုရှားနိုင်ငံ၊ စိန့်ပီတာစဘတ်မြို့နှင့် နောက်ပိုင်းတွင် ပရပ်ရှားနိုင်ငံ မြို့တော် ဘာလင်မြို့တို့တွင် ကုန်းဆုံးခဲ့သည်က များသည်။
"အွိုင်းလားစာတွေကို ဖတ်ပါ။ သူက ငါတို့အားလုံးရဲ့ ဆရာပဲ"ဟူသော Pierre-Simon Laplace ၏စကားရပ်သည် အွိုင်းလား၏ သင်္ချာပညာတွင် မည်မျှလွှမ်းမိုးနိုင်မှု ဖော်ပြနေသော စကားသာ ဖြစ်သည်။ "[၅][၆]
ဘဝထွေထွေ
ဘဝအစပိုင်း
လီယွန်ဟတ် အွိုင်းလားကို ၁၅ ရက် ဧပြီလ ၁၇၀၇ ခုနှစ်တွင် ဆွစ်ဇာလန်နိုင်ငံ၊ ရိုင်းမြစ်ကမ်းပေါ်မှ ဘာဆဲလ်မြို့တွင် ပရိုတက်စတင့်ဘုရားကျောင်းမှ သင်းအုပ်ဆရာ ပေါလ် အွိုင်လာနှင့် မာဂူရီတီ နီး ဘရုစ်ကာ တို့မှ ဖွားမြင်ခဲ့ပြီး အန်နာ မာရီယာနှင့် မာရီယာ မာဂ်ဒါလန်နာ ဆိုသော ညီမငယ် နှစ်ဦးရှိသည်. လီယွန်ဟတ်မွေးပြီး များမကြာမီတွင် အွိုင်းလားမိသားစုသသည် ဘာဆဲလ်မြို့မှ ရီဟန်မြို့သို့ ပြောင်းရွေ့သွားခဲ့သည်။ လီယွန်ဟတ်၏ ငယ်ဘဝတော်တော်များများသည် ထိုဒေသတွင်သာ ကုန်ဆုံးခဲ့သည်။ ပေါလ်အွိုင်လာ သည် နောက်တွင် ဥရောပတွင် အထင်ရှားဆုံးသင်္ချာပညာရှင်တစ်ယောက် ဖြစ်လာမည့် ဘာနောလီ မိသားစုမှ ယိုဟန် ဘာနောလိနှင့် မိတ်ဆွေဖြစ်လာသောအခါ ငယ်ရွယ်သူ လီယွန်ဟတ်အတွက် ယိုဟန် ဘာနောလီဟာ သိသိသာသာ လွှမ်းမိုးလာတဲ့ လေးစားရသော ပုဂ္ဂိုလ်တစ်ယောက်ဖြစ်လာခဲ့သည်။
အွိုင်းလားဟာ ဘာဆဲလ်မြို့တွင် အမိဘက်မှတော်စပ်သော အဘွားနှင့် အတူနေ၍ ပညာသင်ကြားခဲ့သည်။ ၁၇၂၀ ခုနှစ် သူ့အသက် ၁၃ နှစ်တွင် ဘာဆဲလ်တက္ကသိုလ်သို့ တက်ရောက်ပညာသင်ကြားခဲ့ပြီး ၂၃ နှစ်အရွယ် ၁၇၂၃ ခုနှစ် မဟာဒဿနိကဘွဲ့ကို ကျမ်းပြုစု၍ ရရှိခဲ့သည်။ ထိုကျမ်းသည် နယူတန်နှင့် ဒေကားတို့၏ ကျမ်းများနှင့် ယှဉ်၍ရသော ကျမ်းတစ်ခု ဖြစ်ခဲ့သည်။ ထိုအချိန်တွင် လီယွန်ဟတ် အွိုင်လာသည် သင်္ချာဉာဏ်ထက်သန်သူ တပည့်တို့ကို တပည့်မွေးတော်သူ ဂျိုဟန် ဘာနောလိ၏ စနေနေ့ နေ့ခင်းပိုင်း သင်ခန်းစာ ယူနေပြီ ဖြစ်သည်။[၇] ဒါအပြင့် သင်းအုပ်ဆရာတစ်ဦးဖြစ်စေချင်သော ဖခင်၏ တိုက်တွန်းမှုဖြင့် ဘုရားသခင်နှင့် ဘာသာရေးဆိုင်ရာယုံကြည်မှုဆိုင်ရာ ပညာရပ်၊ ဂရိဘာသာနှင့် ဟီဘရူးဘာသာတို့ကို လေ့လာနေခဲ့သေးသည်။ သိုပေမယ့် ဘာနောလိမှ လီယွန်ဟတ်သည် သင်္ချာပညာရှင်ဖြစ်နိုင်သော ဉာဏ်ရှိသည်ဟူဆိုကာ သူ့ဖခင် စည်းရုံးသိမ်းသွင်းနေခဲ့သည်။
၁၇၂၆ ခုနှစ် တွင် De Sono ဟူသော ခေါင်းစဉ်ဖြင့် အသံ၏အလျင်ကို ကျမ်းပြုစုပြီးခဲ့သည်။[၈] ထိုအချိန်တွင် ဘာဆဲလ်တက္ကသိုလ်တွင် အလုပ်ရရန် ကြိုးပမ်းမှု မအောင်မြင်ခဲ့ပေ။ ၁၇၂၇ ခုနှစ်တွင် ပဲရစ်အကယ်ဒမီမှ ကျင်းပသော အကောင်းဆုံးပြဿနာဖြေရှင်းမှုဆိုင်ရာပြိုင်ပွဲတွင် ဝင်ရောက်ယှဉ်ပြိုင်ခဲ့ရာ ထိုနှစ်က ပုစ္ဆာမှာ သင်္ဘောတွင် ရွက်တိုင်ထားရန် အကောင်းဆုံးနေရာဟူ၍ ဖြစ်သည်။ ထိုပွဲတွင် နောက်တွင် ရေယာဉ်တည်ဆောက်မှုဗိသုကာပညာ၏ ဖခင်ဟုဖြစ်လာမည့် Pierre Bouguer ဆိုသည့်ပုဂ္ဂိုလ်မှ ပထမဆုရရှိခဲ့ပြီး အွိုင်းလားက ဒုတိယရရှိခဲ့သည်။ နောက်တွင် အွိုင်လာသည် ထိုပြိုင်ပွဲကို နှစ်စဉ် ၁၂ ကြိမ်တိုင်တိုင် ဆုရရှိခဲ့သည်။[၉]
စိန့်ပီတာစဘတ်မြို့
ထိုအအချိန်ဝန်းကျင်တွင် ယိုဟန်ဘာနောလိ၏ သားနှစ်ယောက်ဖြစ်သော ဒန်နီယယ်နှင့် နီကိုလပ်စ်တို့သည် စိန့်ပီတာစဘတ်မြို့တွင်ရှိသော ရုရှားအင်ပါယာသိပ္ပံအကယ်ဒမီတွင် အလုပ်လုပ်နေကြသည်။ ၁၇၂၆ ခုနှစ် ဇူလိုင်လ ၁၀ ရက်နေ့ ရုရှားနိုင်ငံတွင် တစ်နှစ်လောက်နေပြီးသည့်အချိန်တွင် နီကိုလပ်စ် ဘာနောလိသည် အူအတက်ရောင်ရောဂါဖြင့် ကွယ်လွန်သွားခဲ့သည်။[၁၀][၁၁] ညီဖြစ်သူ နီကိုလပ်စ်နေရာတွင် ဒန်နီယယ်မှာ တာဝန်ယူခဲ့ပြီး ဇီဝကမ္မဗေဒဌာနမှ သူနေရာတွင် သူ၏ သူငယ်ချင်းဖြစ်သူ အွိုင်းလားကို အစားထိုးခဲ့သည်။ ဘာဆဲလ်တက္ကသိုလ်တွင် ရူပဗေဒပါမောက္ခရာထူးအတွက် လျှောက်ထားရန် မအောင်မြင်ချိန် ၁၇၂၆ ခုနှစ် နိုဝင်ဘာလတွင် ထိုအခွင့်အရေးကို စိတ်အားထက်သန်စွာ အွိုင်းလားမှ လက်ခံခဲ့ပြီး စိန့်ပီတာစဘတ်သို့ ပြောင်းရွေ့ခဲ့သည်။[၁၂]

ပီတာစဘတ်သို့ ၁၇၂၇ ခုနှစ် မေလ ၁၇ ရက်နေ့တွင် အွိုင်းလားရောက်ရှိခဲ့သည်။ ဆေးပညာဌာန အငယ်တန်းနေရာမှ သင်္ချာဌာနသို့ ရာထူးတိုးခဲ့သည်။ တခါတရံ အလုပ်တွဲလုပ်လေ့ရှိသူ ဒန်နီယယ်ဘာနောလိ နှင့်အတူ အခန်းငှားနေခဲ့သည်။ အွိုင်လာသည် ရုရှားဘာသာစကားကို ကျွမ်းကျွမ်းကျင်ကျင်တက်မြောက်လာခဲ့ပြီး စိန့်ပီတာစဘတ်တွင် နေရသောဘဝကို အသားကျလာခဲ့သည်။ သူသည် ရုရှားရေတပ်မတော်တွင် ဆရာဝန်အဖြစ်လည်း အပိုအလုပ်လုပ်ခဲ့သေးသည်။ [၁၃]
ကြီးမြတ်သော ပီတာဘုရင်သည် ရုရှားသိပ္ပံအကယ်ဒမီကို ပညာရေးမြှင့်တင်ရန်နှင့် အနောက်ဥရောပနှင့် ကွာခြားနေသော သိပ္ပံပညာကွာဟမှုကို နည်းပါးလာစေရန်ရည်ရွယ်၍ တည်ထောင်ခဲ့သည်။ ထိုအချက်များကြောင့် အွိုင်လာကဲ့သို့ နိုင်ငံခြားသား ပညာရှင်များအတွက် စိတ်ကျေနယ်ဖွယ်ရှိစေရန် ဆွဲဆောင်နိုင်သကဲ့သို့ ဖြစ်စေခဲ့သည်။ အကယ်ဒမီတွင် များစွာသော ရန်ပုံငွေများကို ပိုင်ဆိုင်ထားပြီး ပီတာဘုရင်ကိုယ်တိုင်နှင့် သူ့၏မှူးကြီးမတ်ရာတို့မှာ လှူဒါန်းထားသော ကြီးမားခန့်ထည်သော စာကြည့်တိုက်ကြီးလည်း ရှိနေသည်။ အကယ်ဒမီ၌ ကျောင်းသားအနည်းငယ်ကိုသာ လက်ခံပြီး သုတေသနလုပ်ငန်းများကို အသားပေးလုပ်ဆောင်နေသည်။[၉]
အွိုင်လာ ပီတာစဘတ်သို့ ရောက်ရှိချိန်တွင် ကတ်သရင်း-၁ ဘုရင်မကြီးမှ ကံကုန်ခဲ့သော ခင်ပွန်းသည် ပီတာဘုရင်၏ လမ်းစဉ်မူဝါဒများအတိုင်း ဆက်လက်အကောင်အထည်ဖော်နေချိန် ဖြစ်သည်။ ရုရှားမှူးမတ်တို့သည် ၁၂ နှစ်သာရှိသော ပီတာ-၂ ဘုရင်လေးအပေါ် ဩဇာညောင်းကာ အာဏာရလာခဲ့ကြ သည်။ မှူးမတ်တို့သည် သိပ္ပံအကယ်ဒမီမှ နိုင်ငံခြားသား သိပ္ပံပညာရှင်များအပေါ်တွင် သံသယရှိလာကြပြီး လစာငွေများ ဖြတ်တောက်ခဲ့ကြခြင်းကြောင့် အွိုင်းလားနှင့် သူ၏ လုပ်ဖော်ကိုင်ဖက်များ ဒုက္ခတွေ့ခဲ့ကြသည်။
ပီတာ-၂ ဘုရင် ကံကုန်သွားပြီးနောက် အခြေအနေများ တဖြည်းဖြည်းကောင်းမွန်လာကာ အဆင်ပြေချောမွေ့စွာပင် ရူပပေဒပါမောက္ခ အဖြစ် ၁၇၃၁ ခုနှစ်တွင် ဖြစ်လာခဲ့သည်။ နှစ်နှစ်အကြာတွင် ဒန်နီယယ်ဘာနောလိသည် စိတ်ကုန် စိတ်ပျက်ခြင်း၊ ဒေါသရမ္မက်တို့ဖြင့် ဘာဆဲလ်မြို့သို့ ထွက်သွားခဲ့သည်။[၁၄]
၁၇၃၄ ခုနှစ် ဇန်နဝါရီလ ၇ ရက်နေ့တွင် လူစွမ်းအားအရင်းအမြစ်အကယ်ဒမီမှာ ပန်းချီဆရာ ဂျော့ဂျ် ဂဇယ်၏သမီးဖြစ်သူ ကတ်သရင်းနာ ဂဇယ်(၁၇၀၇-၁၇၇၃)နှင့် လတ်ဆက်ခဲ့သည်။ [၁၅]ငယ်ရွယ်နုပျိုသော ဇနီးမောင်နှံသည် ညဲဗာမြစ်ကမ်းနံဘေးတွင် အိမ်ဝယ်၍ နေထိုင်ကြသည်။ သာသမီး ၁၃ ဦး မွေးဖွားခဲ့ရာ ၅ ဦး အဖတ်တင်ခဲ့သည်။ [၁၆]
ဘာလင်
ရုရှားတွင်ကြုံတွေရသော ရှုပ်ထွေးမှုများကြောင့် စိုးရိမ်ပူရသည်ဖြစ်ကာ အွိုင်းလားသည် ၁၉ ဇွန် ၁၇၄၁ တွင် စိန့်ပီတာစဘတ်မြို့မှ ထွက်လာခဲ့ပြီး ပရပ်ရှား သိပ္ပံအကယ်ဒမီတွင် မဟာ ဖရက်ဒရစ်ဘုရင်(Frederick the Great of Prussia)ကမ်းလှမ်းသော ရာထူးကို လက်ခံခဲ့သည်။ သူသည် ဘာလင်တွင် ၂၅ နှစ်မျှနေထိုင်ခဲ့ပြီး ဆောင်းပါး ၃၈၀ ကျော်မျှ ရေးသားခဲ့သည်။ ဘာလင်တွင် အွိုင်လာထုတ်ဝေသော ဆောင်းပါးများထဲမှ သူ့အား ကျော်ကြားစေခဲ့သော ဆောင်းပါးနှစ်ပုဒ်ရှိကာ ၎င်းတို့မှာ ၁၇၄၈ ခုနှစ်တွင်ထုတ်ဝေသော အနန္တကို ခွဲခြမ်းစိတ်ဖြာမှုနိဒါန်း(Introductio in analysin infinitorum) နှင့် ဒစ်ဖရန်ရှယ် ကဲကုလ(Differential calculus) အကြောင်းရေးသားထားသည့် ၁၇၅၅ ခုနှစ်တွင် ထုတ်ဝေသော ဒစ်ဖရန်ရှယ်ကဲကုလ အခြေခံများ(Institutiones calculi differentialis)[၁၇] တို့ဖြစ်သည်။[၁၈] ၁၇၅၅ ခုနှစ်တွင် သူအား တော်ဝင်ဆွီဒင်သိပ္ပံအကယ်ဒမီမှ အဝေးရောက်အဖွဲ့ဝင်အဖြစ် ရွေးချယ်ခဲ့သည်။
အွိုင်းလားသည် မင်းသမီး Friederike Charlotte of Brandenburg-Schwedtနှင့် ဖရက်ဒရစ်ဘုရင်၏ တူများအတွက် အလွတ်သင်ဆရာအဖြစ် ကမ်းလှမ်းခံခဲ့ရသည်။ အွိုင်းလားသည် ၁၇၆၀ ခုနှစ်များ အစောပိုင်းတွင် မင်းသမီးထံသို့ စာအစောင့် ၂၀၀ ကျော် ရေးသားပေးပို့ခဲ့သည်။ နောင်တွင် ထိုစာလွှာများ ဂျာမန်မင်းသမီးထံသို့ ပေးစားများ ( Letters of Euler on different Subjects in Natural Philosophy Addressed to a German Princess) အဖြစ် စုစည်းထုတ်ဝေခဲ့ရာ အရောင်းရဆုံးသော စာစုများဖြစ်လာခဲ့သည်။[၁၉] ထိုစာလွှာများထဲတွင် အွိုင်းလား၏ သင်္ချာနှင့် ရူပဗေဒနှင့် ဆက်ဆိုင်သော ဖွင့်ဆိုချက်များ၊ အွိုင်းလား၏ ပုဂ္ဂလအမြင်များနှင့် ဘာသာရေးဆိုင်ရာ ယုံကြည်မှုများပါဝင်ခဲ့သည်။ ထိုစာအုပ်သည် သူ၏ သင်္ချာဆိုင်ရာစာအုပ်များထက်ပင် ဖတ်ရှုသူ ပိုမိုများပြားခဲ့ပြီး ဥရောပနှင့် အမေရိကန်တွင်ပင် ပုံနှိပ်ထုတ်ဝေခဲ့သည်။ ကျော်ကြားလှသော ထိုစာလွှာများသည် အွိုင်းလား၏ သိပ္ပံဆိုင်ရာ အကြောင်းအရာများကို သာမန်လူသို့ နားလည်စေရန် ချဉ်းကပ်နိုင်သည့် စွမ်းဆောင်မှုကို တွေမြင်ရပြီး ထင်ရှားသော သုတေသနသိပ္ပံပညာရှင်များတွင် တွေ့ရခဲ့သော ပုံစံဖြစ်သည်။[၁၈]
အွိုင်းလား၏ ကြီးစွာသော စွမ်းဆောင်မှုဖြင့် အကယ်ဒမီ၏ ဂုဏ်ကို စွမ်းဆောင်ခဲ့ငြား နောက်ဆုံးတွင် ဖရက်ဒရစ်ဘုရင်၏ အမျက်ဒေါသသင့်ကာ ဘာလင်မှ ထွက်ခွာလာခဲ့ရသည်။
အမြင်အာရုံယိုယွင်းခြင်း
အွိုင်းလား၏ အမြင်အာရုံသည် သူ၏သင်္ချာပညာရှင်ဘဝတစ်လျှောက်လုံးတွင် ပိုမိုဆိုးရွာလာခဲ့သည်။ သုံးနှစ်လောက် သေလုနီးပါးဖျားနာခဲ့ပြီးနောက် ၁၇၃၈ ခုနှစ်တွင် အွိုင်းလား၏ညာဘက်မျက်လုံးသည် ကန်းလုနီးနီးဖြစ်လာခဲ့သည်။ သိုပေမယ့် အွိုင်လာသည် စိန်ပီတာစဘတ်အကယ်ဒမီအတွက် မြေပုံဆွဲပညာကို အပတ်တကုတ် အပင်ပန်းခံလုပ်နေရသောကြောင့်ဟု ဆိုခဲ့သည်။ ထိုမျက်လုံးသည် အွိုင်းလား ဂျာမနီတွင် နေထိုင်စဉ်တလျှောက်လုံး ပိုမိုဆိုးရွားလာခဲ့ပြီး ထိုသည်ကြောင့် ဖရက်ဒရစ်ဘုရင်က သူကို "ဆိုက်ကလော့"ဟု ဆိုခဲ့သည်။ ၁၇၆၆ ခုနှစ်တွင် အွိုင်းလားသည် ဘယ်ဘက်မျက်လုံးတွင်လည်း အတွင်းတိမ်တိုးလာသည်ကို တွေ့ရှိခဲ့သည်။ ထိုသို့တွေ့ရှိပြီး ၃ ပတ်အကြာတွင် သူမျက်လုံးများ ကန်းလုနီးပါးဖြစ်သွားစေခဲ့သည်။ အွိုင်းလားသည် မျက်လုံးနှစ်ဖက်စလုံးအမြင်အာရုံ ချို့ယွင်းသွားမှုကို "အခု ကျနော်စိတ် အခြားမပျံ့တာပေါ့ဗျာ" ဟုဆိုခဲ့သည်။ [၂၀] ဥပမာအားဖြင့် အွိုင်းလားသည် ဗာဂျီ ၏ Aeneid ဆိုသည့် လင်္ကာရှည်ကြီးကို အစမှအဆုံး ထစ်ငေါ့ခြင်း မရှိပဲ ထပ်ကာထပ်ကာ ရွတ်ဆိုနိုင်သည်။ ထို့ပြင် ထို့ပြင်ဆင်ထားသည်မူတွင် အွိုင်းလာ'သည် စာမျက်နှာတိုင်း၌ မည်သည့်စာကြောင်းကစပြီး မည်သည့်စာကြောင်း၌ ဆုံးသည်ကို ပြောပြနိုင်သည်။ အွိုင်းလားသည် သူ၏စာကူးသမားအကူအညီဖြင့် လေ့လာမှုနယ်ပယ်အများအပြားတွင် ထုတ်ဝေမှုတို့သည် အမှန်တကယ်ပင် တိုးတက်လာခဲ့သည်။ သူသည် ၁၇၅၅ ခုနှစ်တနှစ်လုံး ပျမ်းမျှအားဖြင့် တပါတ်လျှင် သင်္ချာစာတမ်းငယ်တစ်စောင် ထုတ်ဝေခဲ့သည်။ [၄]
ရုရှားသို့ ပြန်လာခြင်းနှင့် ကွယ်လွန်ခြင်း
ခုနှစ်နှစ်စစ်ပွဲပြင်းထန်လာသည်နှင့်အတူ ၁၇၆၀ တွင် ချာလော့တန်ဘာ့ခ်မြို့(Charlottenburg)ရှိ အွိုင်းလား၏ လယ်တောကို ရုရှားစစ်တပ်များ၏ မွှေနှောက်ဖျက်ဆီးမှုဒဏ်ကို ခံလိုက်ရသည်။ ဗိုလ်ချုပ် အီဗန် ပီသရိုဗစ်ချ် ဆာသီးကော့ဗ် (General Ivan Petrovich Saltykov)သည် အွိုင်လာ၏အိမ်ရာ ပျက်ဆီးဆုံးရှုံးမှုအတွက် လျော်ကြေးငွေပေးအပ်ခဲ့သည်။ နောက်ပိုင်းတွင် ရုရှားဧကရီ အဲလီဇဘတ်က နောက်ထပ်နစ်နာကြေးအဖြစ် ရူဘယ် ၄၀၀၀ ထပ်တိုးပေးခဲ့ရာ ထိုခေတ်ကာလ၌ မတန်တဆများပြားသော နစ်နာကြေးဖြစ်ခဲ့သည်။[၂၁] မဟာကတ်သရင်းဘုရင်မကြီးနန်းတက်ပြီးသောအခါ ရုရှားနိုင်ငံ၏ နိုင်ငံရေးမှာလည်း တည်ငြိမ်လာပြီဖြစ်ရာ စိန့်ပီတာစဘတ်အကယ်ဒမီမှာ ပြန်လာရန် ကမ်းလှမ်းမှုကို လက်ခံခဲ့သည်။ အွိုင်လာသည် တနှစ်တွင် လစာ ရူဘယ် ၃၀၀၀၊ ဇနီးသည်အတွက် အငြိမ်းစားလစာနှင့် သားများအတွက် ရာထူးကြီးကြီးအား ပေးမည်ဟု ကတိတို့ကို တောင်းခံခဲ့ရာ ထိုအားလုံးကို ရုရှားမှအာမခံချက်ပေးခဲ့သည်အတွက် ရုရှားကို ပြန်လာခဲ့သော သူ၏အခြေအနေမှာ အတော်ကြီးကိုပင် ကောင်းမွန်ခဲ့သည်။ သူသည် ကျန်ရှိနေသော ဘဝအချိန်များကို ရုရှား၌ပင် ကုန်လွန်စေခဲ့သည်။ သို့ပေမယ်လည်း ဒုတိယအခေါက် ရုရှား၌ နေထိုင်ခဲ့ရာတွင် ကံကြမ္မာဆိုးတို့ကြောင့် ဘဝမလှဖြစ်ခဲ့ရသည်။ ၁၇၇၁ ခုနှစ်တွင် စိန့်ပီတာစဘတ်၌ လောင်ခဲ့သောမီးသည် အွိုင်လာအိမ်ကိုသာမက ဘဝတစ်ခုလုံးနီးပါး ဝါးမြိုခဲ့သည်။ ၁၇၇၃ ခုနှစ်တွင် အနှစ်လေးဆယ်ကျော်ကြာ ပေါင်းသင်းခဲ့သော ဇနီးသည် ကတ်သရင်းနာကို ဆုံးရှုံးခဲ့ရသည်။
ဇနီးသည်ဆုံးပါးပြီး သုံးနှစ်ခန့်ကြာသောအခါ အွိုင်လာသည် ဇနီးသည်၏ ဖအေတူမအေကွဲ ညီမဖြစ်သူ ဆာလိုမီ အာဘီဂါလ် ဂဇယ်(၁၇၂၃–၁၇၉၄)နှင့် နောက်အိမ်ထောင်ပြုခဲ့သည်။ [၂၂] ဤအိမ်ထောင်သည် သူကွယ်လွန်ချိန်ထိတိုင်အောင် မြဲခဲ့သည်။ ၁၇၈၂ ခုနှစ်တွင် အွိုင်လာသည် အမေရိကန်ဝိဇ္ဇာနှင့်သိပ္ပံအကယ်ဒမီ (American Academy of Arts and Sciences)မှ ပြည်ပဂုဏ်ထူးဆောင်အဖွဲ့ဝင်အဖြစ် ရွေးချယ်ခဲ့သည်။[၂၃]
၁၇၈၃ ခုနှစ် စက်တင်ဘာလ ၁၈ ရက်နေ့ စိန့်ပီတာစဘတ်မြို့၊ သူ၏ မိသားစုနှင့် နေ့လယ်စာစားရင်း အွိုင်းလားသည် သူ၏အကယ်ဒမီမှ မိတ်ဆွေဖြစ်သူ တော်ဝင်ပညာရှင် Anders Johan Lexell နှင့် အသစ်တွေ့ရှိခဲ့သော ယူရေးနပ်စ်ဂြိုဟ်နှင့် ၎င်း၏ ဂြိုဟ်ပတ်လမ်းအကြောင်းကို ဆွေးနွေးနေစဉ် အွိုင်းလားသည် ဦးနှောက်သွေးလွန်ခြင်း (brain hemorrhage)ကြောင့် လဲကျခဲ့သည်။ နာရီအနည်းငယ်ကြာသောအခါ အွိုင်းလားကွယ်လွန်သွားခဲ့သည်။[၂၄] Jacob von Staehlin-Storcksburg သည် ရုရှားသိပ္ပံအကယ်ဒမီအတွက် တိုတောင်းလှသော နာရေးသတင်း ရေးသားပေးခဲ့ပြီး အွိုင်းလား၏ တပည့်တစ်ဦးဖြစ်သူ ရုရှားသင်္ချာပညာရှင် Nicolas Fussမှ ချီကျူးထောပနာစကားကို[၂၅] အသေးစိတ် ရေးသားပေးခဲ့၍ အမှတ်တရတွေ့ဆုံပွဲသို့ ပေးပို့ပေးခဲ့သည်။ ပြင်သစ်အကယ်ဒမီမှ ချီးကျူးဂုဏ်ပြုစကားတွင် ပြင်သစ်သင်္ချာပညာရှင်နှင့် ဒဿနိကပညာရှင် Marquis de Condorcet အောက်ပါအတိုင်းရေးသားခဲ့သည်-
အွိုင်းလားအား Goloday Island ရှိ ဆမားလန်း လူသာရန့်သင်္ချိုင်း တွင် သူ၏ဇနီးဖြစ်သူ ကတ်သရင်းနာ၏ နံဘေးတွင် မြုပ်နှံခဲ့သည်။ ၁၇၈၅ ခုနှစ်တွင် ရုရှားသိပ္ပံအကယ်ဒမီသည် ဒါရိုက်တာထိုင်ခုံနံဘေးတွင် အွိုင်းလား၏ ကိုယ်တစ်ပိုင်းပုံ စကျင်ကျောက်ရုပ်ကို ထားရှိခဲ့ပြီး ၁၈၃၇ ခုနှစ်တွင် အွိုင်းလာူ၏ အုတ်ဂူတွင် ကျောက်တိုင်စိုက်ထူခဲ့သည်။ ၂၅၀ ကြိမ်မြောက် အွိုင်းလား မွေးနေ့နှစ်ပတ်လည် ကျင်းပရန်အလို့ငှာ ၁၉၅၆ ခုနှစ်တွင် ကျောက်တိုင်နှင့် ၎င်း၏ရုပ်ကြွင်းတို့ကို ၁၈ ရာစုမှ သင်္ချိုင်းဟောင်းကြီးဖြစ်သော အလက်ဇန္ဒားညဲဗ်စကီးဘုန်းတော်ကြီးကျောင်းသို့ ရွေ့ခဲ့သည်။

သင်္ချာနှင့် ရူပဗေဒတွင် အွိုင်းလား၏ လုပ်ဆောင်ချက်များ
အွိုင်းလား၏ လုပ်ဆောင်ချက်များသည် များလှစွာသော သင်္ချာနယ်ပယ်များဖြစ်သော ဂျီဩမေတြီ၊ ကဲကုလပ်၊ တြီဂိုနိုမေတြီ၊ အက္ခရာသင်္ချာ နှင့် ကိန်းသီအိုရီ တို့တွင်ပါဝင်ခဲ့ပြီး ရူပဗေဒတွင်လည်း continuum physics၊ လူနာသီအိုရီနှင့် တခြားသော ရူပဗေဒနယ်ပယ်များတွင်လည်း ပါဝင်ခဲ့သည်။ အွိုင်လာသည် သင်္ချာသမိုင်းတွင် လွှမ်းမိုးမှုရှိသူဖြစ်ပြီး သူ၏လုပ်ဆောင်ချက်များကို ပုံနှိပ်မည်ဆိုပါက ၆၀ မှ ၈၀ ကွာတိုအကြားရှိမည်။[၄] အွိုင်လာ၏အမည်သည် အကြောင်းအရာများစွာတို့တွင် ယနေ့တိုင် ပါဝင်နေသည်။
အွိုင်လာသည် သူမရှိတော့သည့်နောက်ပိုင်းတွင် သူ့အမည်ဖြင့် ကိန်းသေနှစ်လုံးရှိသော တဦးတည်းသော သင်္ချာပညာရှင်ဖြစ်သည်။ ပထမဆုံးကိန်းသေမှာ ကဲကုလပ်သင်္ချာတွင် အရေးပါသောအွိုင်လာကိန်း e ဖြစ်ပြီး ၂.၇၁၈၂၈ နီးပါးတန်ဖိုးနှင့် ညီမျှသည်။ နောက်ထပ်ကိန်းသေမှာ en:Euler–Mascheroni constant γ (ဂမ်မာ) ဖြစ်ပြီး "အွိုင်လာကိန်းသေ" ဟုသာရည်ညွှန်းလေရှိကာ ၎င်း၏ တန်းဖိုးမှာ ၀.၅၇၇၂၁ ဖြစ်သည်။[၂၆]
သင်္ချာဆိုင်ရာ လက္ခဏာများ
အွိုင်းလားသည် သင်္ချာဆိုင်ရာအမှတ်လက္ခဏာများကို များလှစွာသော သူ၏စာအုပ်များမှတဆင့် စတင်အသုံးပြုခြင်းဖြင့် လူသုံးတွင်ကျယ်လာအောင်လုပ်ခြင်းတို့ကို ပြုလုပ်နိုင်ခဲ့သည်။ သိသာထင်ရှားတာကိုပြရမည်ဆိုလျှင် ဖန်ရှင်၏ ယူဆချက်များ[၂]ကို စတင်မိတ်ဆက်စဉ်တွင်ဖြစ်ပြီး သူသည် f(x) ဟု ပထမဆုံးအသုံးပြုခဲ့ရာ ဖန်ရှင် f တွင်ပါဝင်သော argument မှာ x ဖြစ်ကြောင်းဖော်ပြခဲ့သည်။ သူသည် တြီဂိုဖန်ရှင်များ၏ အမှတ်လက္ခဏာများ၊ သဘာဝလော်ဂရစ်သမ်၏ အခြေ တမ်းပလိတ်:Math (ယနေ့တွင် အွိုင်လာ၏ကိန်း အဖြစ် လူသိများသည်)၊ ဂရိအက္ခရာ Σ ကို ပေါင်းခြင်းဆိုင်ရာများအတွက်နှင့် imaginary unit ကို သီခြားသတ်မှတ်ရန်အတွက် အက္ခရာ တမ်းပလိတ်:Math တို့ကို စတင်အသုံးပြုခဲ့သည်။ [၂၇] ဂရိအက္ခရာ π ကို စက်ဝိုင်းတစ်ခု၏ စက်ဝန်းမျဉ်းနှင့် အချင်း၏အချိုးအဖြစ် သတ်မှတ်အသုံးပြုခြင်းသည်လည်း အွိုင်လာမှ စတင်အသုံးပြုခဲ့ခြင်းမဟုတ်သော်လည်း အွိုင်းလားလက်ထက်မှသာ လူသိများလာခဲ့သည်။ [၂၈]
ခွဲခြမ်းစိတ်ဖြာခြင်း
၁၈ ရာစု သင်္ချာဆိုင်ရာ သုတေသနလုပ်ငန်းများတွင် ကဲကုလပ်၏ တိုးတက်မှုသည် ထိပ်ဆုံးသို့ရောက်ရှိနေသည်။ အွိုင်းလား၏ မိတ်ရင်းဆွေရင်းဖြစ်သော ဘာနောလိမိသားစုသည် ထိုနယ်ပယ်၏ အစောပိုင်းတိုးတက်မှုများတွင် များစွာဆောင်ရွက်ခဲ့သည်။ ထိုမိသားစု၏ အွိုင်းလားအပေါ်လွှမ်းမိုးမှုကျေးဇူးကြောင့် ကဲကုလပ်ကို လေ့လာခြင်းသည် အွိုင်းလားအတွက် အဓိက အာရုံစူးစိုက်ဖွယ်ရာကြီး ဖြစ်နေခဲ့သည်။ အွိုင်းလား၏ သက်သေပြချက်အချို့ကို ခေတ်သစ် mathematical rigour[၂၉] စံများအရ လက်ခံနိုင်ဖွယ်မရှိဖြစ်နေချိန်တွင် သူ၏ အတွေးအခေါ်များသည် ကြီးမားသော တိုးတက်မှုများဆီသို့ ဦးဆောင်နေခဲ့သည်။ အွိုင်းလားသည် ခွဲခြမ်းစိတ်ဖြာသင်္ချာအား မကြာခဏ အသုံးပြုခြင်းနှင့် အောက်ဖော်ပြပါ ညီမျှခြင်းကဲ့သို့ အနန္တဆိုင်ရာအဓိပ္ပာယ်သတ်မှတ်ချက်များ ပေါင်းခြင်းဖြင့် ဖန်ရှင်တို့ကိုဖော်ပြရာတွင် အသုံးပြုခြင်းတို့ကြောင့် ပါဝါစီးရီးတွင် တိုးတက်မှုများရှိခြင်းတို့ဖြင့် ကျော်ကြားသည်။
မှတ်သားဖွယ်ရာမှာ အွိုင်းလားသည် တမ်းပလိတ်:Math နှင့် inverse tangent function တို့၏ ပါဝါစီးရီးဖြန့်ခြင်းကို တိုက်ရိုက်သက်သေပြခဲ့သည်။ (သွယ်ဝိုက်သက်သေပြခြင်းဖြစ်သော inverse power series technique ကို နယူတန်နှင့် လိုင်ဘနီဇ် တို့မှ ၁၆၇၀ နှင့် ၁၆၈၀ ခုနှစ်အကြားလောက်တွင် အဖြေရှာပြီးခဲ့ပြီ ဖြစ်သည်။) သူ၏ ပါဝါစီးရီးအား ရဲရဲရင့်ရင့်အသုံးပြုမှုသည် သူအား ကျော်ကြားလှသော ဘာဆယ်ပုစ္ဆာ ကို ၁၇၃၅ ခုနှစ်တွင် ဖြေရှင်းနိုင်ရန် လမ်းစဖြစ်ခဲ့သည်။ (သူသည် ပိုမိုကျယ်ပြန့်သော အကြောင်းပြချက်များကို ၁၇၄၁ ခုနှစ်တွင် ထပ်မံပေးနိုင်ခဲ့သည်။):[၂၉]

အွိုင်းလားသည် Exponential functionနှင့် လော့ဂရစ်သမ်(Logarithm) တို့သို့ ခွဲခြမ်းစိတ်ဖြာသက်သေပြခြင်း စတင်သက်သေပြခဲ့သည်။ သူသည် လော့ဂရစ်သမ်ဖန်ရှင်များကို ပါဝါစီးရီးအသုံးပြုခြင်းဖြင့် သက်သေပြခြင်းကို ရှာဖွေတွေ့ရှိခဲ့ပြီး လော့ဂရစ်သမ်များအတွက် အနှုတ်တန်ဖိုးနှင့် ကွန်ပလက်စ်ကိန်းတို့ကို အောင်မြင်စွာ အဓိပ္ပာယ်ဖွင့်ဆိုနိုင်ခဲ့သည်။ ထိုသည်မှာ သင်္ချာပညာတွင် လော့ဂရစ်သမ်အား အသုံးပြုမှုနယ်ပယ်ကို ပိုမိုကျယ်ပြန့်သွားစေခဲ့သည်။[၂၇] သူသည် ကွန်ပလက်စ်ကိန်းများ၏ exponential function ကိုလည်း ရှင်းလင်းသတ်မှတ်နိုင်ခဲ့ပြီး ထိုသည်တို့မှာ Trigonometric functions နှင့် ဆက်နွယ်နေမှုကိုလည်း ရှာဖွေတွေ့ရှိခဲ့သည်။ မည်သည့်ကိန်းစစ် [[:en:φ|တမ်းပလိတ်:Math]] အတွက်မဆို အွိုင်းလားပုံသေနည်း အရ complex exponential ကို
ဟုဖော်ပြသည်။ အထူးအခြေအနေများအတွက် ထိုပုံသေနည်းကို Euler's identity
ဟုခေါ်ပြီး ရစ်ချက်ဖိုင်းမန်း(Richard P. Feynman)က ပေါင်းခြင်း၊ မြှောက်ခြင်းနှင့် exponentiation ဆိုင်ရာအယူအဆတို့ကို တစ်ကြိမ်တည်းအသုံးပြုမှုနှင့် အရေးကြီးသော ကိန်းသေများဖြစ်သော 0၊ 1၊ တမ်းပလိတ်:Math၊ တမ်းပလိတ်:Math တို့ကို တကြိမ်တည်း အသုံးပြုမှုတို့ကြောင့် "သင်္ချာပညာ၏ အံလောက်ဖွယ်ပုံသေနည်း" ဟုဆိုခဲ့သည်။[၃၀] ၁၉၈၈ ခုနှစ်တွင် Mathematical Intelligencer သင်္ချာဂျာနယ် စာဖတ်သူပရိသတ်များက "အမြဲအလှပဆုံး သင်္ချာပုံသေနည်း"အဖြစ် မဲပေးရွေးချယ်ခဲ့ကြသည်။[၃၁] နောက်ဆုံးတွင် အွိုင်လာသည် ထိုမဲပေးမှုတွင် ထိပ်ဆုံးပုံသေနည်းငါးခုအနက် တတိယမြောက်ကို ရရှိခဲ့သည်။[၃၁]
De Moivre's formula သည် Euler's formula ၏ တိုက်ရိုက်အကျိုးဆက်ဖြစ်သည်။
ထိုမျှမကသေး အွိုင်းလားသည် gamma function အား စတင်ရှင်းလင်းခြင်းဖြင့် higher transcendental functions သီအိုရီကို ကျယ်ကျယ်ပြန့်ပြန့် အသေးစိတ် ရှင်းပြခြင်း၊ quartic equation များကို နည်းသစ်များအသုံးပြု၍ ရှင်းလင်းခြင်းတို့ကို လုပ်ဆောင်ခဲ့သည်။ သူသည် complex limit များဖြင့် အင်တီဂရယ်များကို ရှင်းလင်းခြင်းကိုလည်း တွေ့ရှိခဲ့ရာ ယနေ့ခေတ် complex analysis ဖွံ့ဖြိုးတိုးတက်မှုအတွက် ရှေ့ပြေးနိမိတ်များလည်း ဖြစ်ခဲ့သည်။ ထို့ပြင် သူသည် လူသိများသည့် ရလဒ်ဖြစ်သော Euler–Lagrange equation အပါအဝင် calculus of variations ကိုလည်း တီထွင်ခဲ့သည်။
အွိုင်းလားသည် ကိန်းသီအိုရီ ပုစ္ဆာများကို ခွဲခြမ်းစိတ်ဖြာနည်းအား အသုံးပြု၍ စတင်တွက်ချက်ခဲ့သူတစ်ဦးလည်း ဖြစ်သည်။ သူသည် မတူကွဲပြားသော သင်္ချာနယ်ပယ်နှစ်ခုကို ပေါင်းစပ်ပြီး သင်္ချာပညာရပ်တစ်ခုဖြစ်သည့် analytic number theory ကို စတင်မိတ်ဆက်ခဲ့သည်။ ထိုနယ်ပယ်၏ အခြေခံများဖြစ်သည့် hypergeometric series သီအိုရီ၊ q-series၊ hyperbolic trigonometric functionsနှင့် continued fractions ၏ ခွဲခြမ်းစိတ်ဖြာသီအိုရီကို သူက ဖန်တီးခဲ့သည်။ ဥပမာအားဖြင့် အွိုင်လာသည် infinitude of primes ကို ဟာမိုနစ်စီးရီးများ၏ သွေဖည်ခြင်းကို အသုံးပြု၍ သက်သေပြခဲ့သည်။ သူသည် ခွဲခြမ်းစိတ်ဖြာနည်းကို အသုံးပြု၍ သုဒ္ဓကိန်း များကို ဖြန်ခွဲခဲ့သည်။ ထိုနယ်ပယ်တွင် အွိုင်လာ၏ လုပ်ဆောင်ချက်သည် သုဒ္ဓကိန်းသီအိုရမ် ဖွံ့ဖြိုးတိုးတက်မှုကို ဦးဆောင်နိုင်ခဲ့သည်။[၃၂]
ကိန်းသီအိုရီ
အွိုင်းလား၏ ကိန်းသီအိုရီနှင့်ပတ်သက်၍ စိတ်ဝင်စားလာမှု အရင်းခံသည် စိန့်ပီတာစဘတ်အကယ်ဒမီမှ သူ၏သူငယ်ချင်းဖြစ်သူ ခရစ်စတိန်း ဂိုးလ်ဘက်ချ်(Christian Goldbach) ကြောင့် ဖြစ်နိုင်သည်။ အွိုင်းလား၏ အစောပိုင်းကိန်းသီအိုရီနှင့်ပတ်သက်၍ အားထုတ်မှုသည် ပီယား ဒေ ဖဲမ၏ တွေ့ရှိချက်များပေါ်တွင် အခြေခံခဲ့သည်။ အွိုင်လာသည် ဖဲမ၏ စိတ်ကူးတို့ကို ချဲ့ကားခဲ့ပြီး သူ၏အနုမာနတချို့ကိုလည်း မှန်ကန်မှုမရှိကြောင်း သက်သေပြခဲ့သည်။
အွိုင်းလားသည် သုဒ္ဓကိန်းဖြန့်ခွဲခြင်း သဘာဝကို ခွဲခြမ်းစိတ်ဖြာခြင်းနှင့် ဆက်စပ်ပေးခဲ့သည်။ အွိုင်းလားသည် အပိုင်းကိန်းဖြစ်သော သုဒ္ဓကိန်းများပေါင်းခြင်း (Divergence of the sum of the reciprocals of the primes) ကို သက်သေပြခဲ့သည်။ ဆက်လက်၍ အွိုင်းလားသည် သုဒ္ဓကိန်းများနှင့် ရိုင်းမန်း ဇီတာဖန်ရှင် (Riemann zeta function) အကြား ဆက်နွက်ချက်ကို တွေ့ရှိခဲ့ပြီး ၎င်းသည် Proof of the Euler product formula for the Riemann zeta function အဖြစ် နာမည်ကျော်ကြားခဲ့သည်။
အွိုင်းလားသည် Newton's identities၊ Fermat's little theorem၊ Fermat's theorem on sums of two squares တို့ကို သက်သေပြခဲ့ပြီး သူ၏ သိသာသောဆောင်ရွက်မှုကို Lagrange's four-square theorem တွင် တွေ့ရသည်။ သူသည် totient function φ(n) ကိုလည်း တွေ့ရှိခဲ့သည်။ ထိုဖန်ရှင်၏ ဂုဏ်သတ္တိများကို အသုံးပြု၍ အွိုင်လာသည် ဖဲမ၏ Fermat's little theorem မှ ယခုအခါ Euler's theorem ဟုခေါ်ဆိုသော သီအိုရမ်ကို ရရှိခဲ့သည်။ အွိုင်းလားသည် perfect number တွင် သိသာထင်ရှားသော ဆောင်ရွက်နိုင်ခဲ့ပြီး ၎င်းမှာ ယူကလစ်တို့လက်ထက်ကတည်းကစ၍ သင်္ချာပညာရှင်များ စိတ်ဝင်စားကြသော ကဏ္ဍဖြစ်သည်။ သူသည် perfect numbers နှင့် Mersenne prime များ ဆက်နွယ်ချက်ကို သက်သေပြခဲ့ပြီး ၎င်းကို ယူကလစ်မှလည်း one-to-one အဖြစ် သက်သေပြခဲ့ရာ ထိုရလဒ်များကို တနည်းအားဖြင့် Euclid–Euler theorem ဟူ၍ သိကြသည်။ အွိုင်းလားသည် quadratic reciprocity ၏ ဥပဒေသကို တွေးဆခဲ့သေးသည်။ ထိုသဘောတရားများကို ကိန်းသီအိုရီ၏ အခြေခံသီအိုရမ်များအဖြစ် မှတ်ယူခဲ့ကာ သူ၏ အတွေးအခေါ်များသည် ကားလ် ဖရီးဒရစ် ဂေါက်၏ လုပ်ဆောင်ချက်များ၏ အခြေခံများ ဖြစ်ခဲ့သည်။[၃၃] ၁၇၇၂ တွင် အွိုင်းလားသည် Mersenne prime ဖြစ်သည့် 231 − 1 = 2,147,483,647 ကို သက်သေပြခဲ့ရာ ၁၈၆၇ ခုနှစ်မတိုင်မီအထိ အရှည်ဆုံးသုဒ္ဓကိန်း (largest known prime) အဖြစ် ရှိခဲ့သည်။[၃၄]
ဂရပ်သီအိုရီ

၁၇၃၅ ခုနှစ်တွင် အွိုင်းလားသည် Königsberg မြို့၏ တံတားခုနစ်စင်းပြဿနာ ဟုခေါ်သော ပုစ္ဆာ၏ ဖြေရှင်းနည်းကို ပြသခဲ့သည်။[၃၅] ပရပ်ရှားနိုင်ငံ၏ မြို့တစ်မြို့ဖြစ်သော Königsberg မြို့သည် Pregel တွင် တည်ထားသည်ဖြစ်ကာ ကျွန်းကြီး နှစ်ကျွန်းပါဝင်ကာ ကျွန်းအချင်းချင်းနှင့်ရော ပင်မကုန်းမြေနှင့်ပါ အချင်းချင်း ဆက်သွယ်ထားသော တံတား ခုနစ်စင်းပါဝင်သည်။ ပုစ္ဆာမှာ တံတားအားလုံးအား တစ်ကြိမ်စီသာဖြတ်သန်း၍ စမှတ်သို့ ပြန်သွားရမည် ဖြစ်နိုင်သော လမ်းကြောင်းအား ဆုံးဖြတ်ရမည်ဖြစ်သည်။ ဒါဟာ မဖြစ်နိုင်ပါဘူး၊ သိုပေမယ့် Eulerian circuit တွင်တော့ မဟုတ်ခဲ့ပါဘူး။ ဒီဖြေရှင်းချက်သည် ဂရပ်သီအိုရီ၏ ပထမဆုံးသီအိုရမ် ဖြစ်လာခဲ့သည်။ အတိအကျပြောမည်ဆိုလျှင် planar graph သီအိုရီတွင် ဖြစ်သည်။[၃၅]
အွိုင်းလား convex polyhedron တို့၏ ထိပ်စွန်းများ(vertices)၊ ထိပ်စွန်းမျဉ်းများ(edges)နှင့် မျက်နှာပြင်များ(faces)၏ အရေအတွက်တို့နှင့် ဆက်နွယ်နေသော တမ်းပလိတ်:Math − တမ်းပလိတ်:Math + တမ်းပလိတ်:Math = 2 ဟူသော ပုံသေနည်းကို တွေ့ရှိခဲ့ရာ[၃၆] ဤသည်မှာ planar graph ပင်ဖြစ်သည်။ ထိုဖော်မြူလာတွင်ပါဝင်သော ကိန်းသေကို ဂရပ်များ(သို့မဟုတ် သင်္ချာဆိုင်ရာ အရာဝတ္တုများ)အတွက် အွိုင်းလားဝိသေသလက္ခဏာ (Euler characteristic) ဟုခေါ်ပြီး အရာဝတ္တုတို့၏ genus နှင့်လည်းဆက်နွယ်နေသည်။[၃၇] ဤပုံသေနည်းအား လေ့လာခြင်းနှင့် ခြုံငုံကောတ်ချက်ချခြင်းကို တိုပေါ်လော်ဂျီ၏ မူလအစတွင် Cauchy[၃၈] နှင့် L'Huillier[၃၉] တို့မှ အထူးပြုဆောင်ရွက်ခဲ့ကြသည်။
အသုံးချသင်္ချာ
အွိုင်းလား၏ ကြီးကျယ်လှသော အောင်မြင်မှုများထဲတွင် လက်တွေ့အသုံးချနိုင်သော ပုစ္ဆာများ(real-world problems)ကို ခွဲခြမ်းစိတ်ဖြာနည်းဖြင့်ဖြေရှင်းခြင်း ဖြစ်ပြီး ထိုအထဲတွင် Bernoulli numbers၊ Fourier series၊ Euler number၊ ကိန်းသေများဖြစ်ကြသော [[:en:E (mathematical constant)|တမ်းပလိတ်:Math]] နှင့် [[:en:pi|တမ်းပလိတ်:Pi]]၊ continued fraction နှင့် အင်တီဂရယ်တို့၏ များလှစွာသော အသုံးချနိုင်မှုတို့ ပါဝင်သည်။ သူသည် လိုက်ဘနစ် ၏ ဒစ်ဖရန်ရှယ် ကဲကုလကို နယူတန်၏ Method of Fluxions ဖြင့် ပေါင်းစပ်ခဲ့ကာ ရရှိလာသော ရလဒ်များသည် physical problems များတွင် ကဲကုလအား အသုံးပြုရာတွင် လွယ်ကူစေခဲ့သည်။ သူ၏ အကြီးမားဆုံးသော ခြေလှမ်းမှာ အင်တီဂရယ်များ၏ numerical approximation ကို မြှင့်တင်ခဲ့ခြင်းဖြစ်ပြီး ထိုတွေ့ရှိချက်ကို ယခုအခါတွင် Euler approximations ဟု ခေါ်ဆိုကြသည်။ ထိုမှန်းခြေ၏ မှတ်သားဖွယ်ရာများမှာ Euler's method နှင့် Euler–Maclaurin formula တို့ဖြစ်သည်။
ရူပဗေဒနှင့် နက္ခတ္တဗေဒ
အွိုင်းလားသည် Euler–Bernoulli beam equation ကို ကောင်းမွန်တိုးတက်အောင် လုပ်ခဲ့ပြီး ထိုသည်မှာ အင်ဂျင်နီယာပညာရပ်၏ မှတ်တိုင်တစ်ခုဖြစ်ခဲ့သည်။ သူ၏ ခွဲခြမ်းစိတ်ဖြာနည်းများကို ရှေးရိုးမက္ကင်းနစ်၏ ပုစ္ဆာများ အောင်မြင်စွာ အသုံးချနိုင်သည့်အပြင် အွိုင်းလားသည် ဤနည်းများကို အာကာသနှင့်ဆိုင်သော ပုစ္ဆာများတွင်လည်း အသုံးချနိုင်ခဲ့သည်။ အွိုင်းလား၏ ပြီးပြည့်စုံသော အောင်မြင်မှုများထဲတွင် ကြယ်တံခွန်များနှင့် အာကသရှိ အရာဝတ္ထုများ၏ ပတ်လမ်းကို ပိုမိုတိကျမှုရှိအောင် ဆုံးဖြတ်နိုင်စွမ်းရှိခဲ့ခြင်း၊ ကြယ်တံခွန်များ၏ သဘာဝကို နားလည်နိုင်စွမ်းရှိလာခြင်း၊ နေ၏ parallax (မတူညီသော ရှုထောင့်နှစ်ခုမှ အရာဝတ္ထု၏ သိသာထင်ရှားသော နေရာအား ကြည့်ရှုရာ၌ ခြားနားမှု)ကို တွက်ချက်ခြင်းတို့ ပါဝင်သည်။ သူ၏ တွက်ချက်မှုများသည် longitude tables အား တိကျမှုရှိအောင်လည်း လုပ်ဆောင်နိုင်ခဲ့သည်။[၄၀]
အွိုင်းလားသည် အလင်းသီအိုရီ (optics)နှင့်ပတ်သက်၍ အရေးကြီးသော ဆောင်ရွက်မှုများ ပြုလုပ်ခဲ့သေးသည်။ အွိုင်းလားသည် ထိုအချိန်က Opticks တွင် လွှမ်းမိုးမှုရှိနေသော နယူတန်၏ corpuscular theory of light ကို လက်မခံခဲ့ပေ။ အွိုင်းလား၏ ၁၇၄၀ ခုနှစ်များမှ အလင်းနှင့်ဆိုင်သော သူ၏စာတမ်းများသည် Christiaan Huygens အဆိုပြုသော wave theory of light ကို ခိုင်မာစေရန် အကူအညီပေးခဲ့ပြီး လွှမ်းမိုးသောအယူအဆအဖြစ် quantum theory of light မတိုင်မီအထိ ရှိခဲ့သည်။[၄၁]
၁၇၅၇ ခုနှစ်တွင် သူသည် ယခုအခါတွင် inviscid flow ၏ အရေးကြီးသော ညီမျှခြင်းတစ်ခုကို ဖော်ထုတ်ခဲ့ရာ Euler equations အဖြစ် လူသိများလျက်ရှိသည်။[၄၂] ဒစ်ဖရန်ရှယ်ပုံစံတွင် ဤညီမျှခြင်းသည်-
ဤနေရာ၌
- ρ သည် အရည်၏ ထုထည်သိပ်သည်းဆ,
- u သည် အရည်၏ velocity vector, with components u, v, and w,
- E = ρ e + ½ ρ (u2 + v2 + w2) is the total energy per unit volume, with e being the internal energy per unit mass for the fluid,
- p is the pressure,
- ⊗ denotes the tensor product, and
- 0 being the zero vector.
အွိုင်းလားသည် structural engineering တွင်လည်း ideal strut ၏ critical buckling load ကို တွက်ချက်ပေးနိုင်သော သူ၏ ညီမျှခြင်းအတွက် ထင်ရှားလျက်ရှိပြီး ထိုညီမျှခြင်းတွင် ideal strut ၏ length နှင့် flexural stiffness တို့သာမူတည်နေသည်-[၄၃]
where
- F = maximum or critical force (vertical load on column),
- E = modulus of elasticity,
- I = area moment of inertia,
- L = unsupported length of column,
- K = column effective length factor, whose value depends on the conditions of end support of the column, as follows.
- For both ends pinned (hinged, free to rotate), K = 1.0.
- For both ends fixed, K = 0.50.
- For one end fixed and the other end pinned, K = 0.699…
- For one end fixed and the other end free to move laterally, K = 2.0.
- K L is the effective length of the column.
ဂုဏ်ပြုအထိမ်းအမှတ်များ

အွိုင်းလား၏ရုပ်ပုံ ဆွစ် ၁၀ ဖရန့် ငွေစက္ကူ (banknote)၏ ခြောက်ခုမြောက်စီးရီးတွင် ဖော်ပြခဲ့ပြီး ဆွစ်ဇာလန်၊ ဂျာမနီ၊ ရုရှားနိုင်ငံတို့၏ တံဆိပ်ခေါင်းများတွင်လည်း ဖော်ပြခဲ့သည်။ ဂြိုဟ်သိမ် 2002 Euler ကို အွိုင်လာအား ဂုဏ်ပြုသောအားဖြင့် မှည့်ခေါ်ခဲ့ခြင်းဖြစ်သည်။ လူသာရန်ဘုရားကျောင်းတော်မှ ၎င်းတို့၏ Calendar of Saints တွင် မေလ ၂၄ အား အွိုင်းလားအား ရည်စူး၍ အထိမ်းအမှတ်ပွဲများ ကျင်းပကြသည်။ အွိုင်းလားသည် ခရစ်ယာန်ဘာသာကို ရိုသေကိုင်းရှိုင်းသူဖြစ်ကာ (biblical inerrancy ကို ယုံကြည်သူ) apologetics တို့ကို ရေးသားခဲ့ပြီး သူတို့ခေတ်က အထင်ကရ ထာဝရဘုရားကိုမယုံကြည်သူနှင့် ပြင်းပြင်းထန်ထန် ငြင်းခုံဆွေးနွေးခဲ့သည်။[၄၄]
ရွေးချယ်ထားသော စာစုများစာရင်း

အွိုင်းလားသည် လုပ်ဆောင်မှုများ များပြားလှသည်ဖြစ်ကာ လူသိများသော စာအုပ်များထဲတွင် အောက်ပါတို့ ပါဝင်သည်-
- Mechanica (၁၇၃၆)။
- Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti (၁၇၄၄)။ လက်တင်ဘာသာပြန်ထားသောအမည်မှာ a method for finding curved lines enjoying properties of maximum or minimum, or solution of isoperimetric problems in the broadest accepted sense။[၄၅]
- Introductio in analysin infinitorum (၁၇၄၈)။ ဂျွန်ဘလန်တန်(John Blanton)မှ အင်္ဂလိပ်ဘာသာပြန်သည့် Introduction to Analysis of the Infinite (Book I, တမ်းပလိတ်:ISBN, Springer-Verlag 1988; Book II, တမ်းပလိတ်:ISBN, Springer-Verlag 1989)။
- Elements of Algebra (၁၇၆၅)။ This elementary algebra text starts with a discussion of the nature of numbers and gives a comprehensive introduction to algebra, including formulae for solutions of polynomial equations။
- ကဲကုလဘာသာရပ်တွင် လွှမ်မိုးနိုင်သော စာအုပ်နှစ်အုပ်ဖြစ်သည့် Institutiones calculi differentialis (၁၇၅၅) နှင့် Institutionum calculi integralis (၁၇၆၈–၁၇၇၀)။
- Letters to a German Princess (၁၇၆၈–၁၇၇၂)။
ဆွီဒင်သိပ္ပံအကယ်ဒမီ၏ အွိုင်လာကော်မရှင်မှ ၁၉၁၁ ခုနှစ်ကတည်းက ပုံနှိပ်ခဲ့သော Opera Omnia ဟုအမည်ပေးထားသော စာအုပ်သည် အွိုင်းလား၏ ကြိုပမ်းအားထုတ်မှုတို့ကို စုစည်းထားသော စာအုပ်ဖြစ်သည်။ အွိုင်းလား၏ ဆောင်ရွက်ခဲ့မှုများ အပြည့်အစုံကို အစဉ်အတိုင်းဖော်ပြထားသည်ကို ဖော်ပြပါ စာမျက်နှာတွင် ကြည့်ရှုနိုင်သည်- The Eneström Index တမ်းပလိတ်:Webarchive (PDF).
ကိုးကား
ဆက်လက်ဖတ်ရှုရန်များ
- Lexikon der Naturwissenschaftler, (2000), Heidelberg: Spektrum Akademischer Verlag.
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite journal
- Ronald Calinger, Leonhard Euler: Mathematical Genius in the Enlightenment, Princeton University Press, 2016.
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite journal In တမ်းပလိတ်:Harvnb
- တမ်းပလိတ်:Cite journal Special Issue on Leonhard Paul Euler's: Mathematical Topics and Applications.
- တမ်းပလိတ်:Cite journal
- Hascher, Xavier and Papadopoulos, Athanase (editors). 2015. Leonhard Euler : Mathématicien, physicien et théoricien de la musique', Paris, CNRS Editions, 2015, 516 p. (တမ်းပလိတ်:Isbn)
- Heimpell, Hermann, Theodor Heuss, Benno Reifenberg (editors). 1956. Die großen Deutschen, volume 2, Berlin: Ullstein Verlag.
- တမ်းပလိတ်:Cite journal တမ်းပလိတ်:Cite web
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite journal In တမ်းပလိတ်:Harvnb
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite book
- တမ်းပလိတ်:Cite journal
- တမ်းပလိတ်:Cite book.
ပြင်ပလင့်များ
တမ်းပလိတ်:Sister project links
- LeonhardEuler.com
- တမ်းပလိတ်:ScienceWorldBiography
- Encyclopædia Britannica article
- တမ်းပလိတ်:MathGenealogy
- How Euler did it contains columns explaining how Euler solved various problems
- Euler Archive
- Leonhard Euler – Œuvres complètes တမ်းပလိတ်:Webarchive Gallica-Math
- Euler Committee of the Swiss Academy of Sciences
- References for Leonhard Euler
- Euler Tercentenary 2007
- The Euler Society
- Euler Family Tree
- Euler's Correspondence with Frederick the Great, King of Prussia
- တမ်းပလိတ်:MacTutor Biography
- Euler Quartic Conjecture
- Portrait of Leonhard Euler from the Lick Observatory Records Digital Archive, UC Santa Cruz Library's Digital Collections တမ်းပလိတ်:Webarchive
- Euler's (1769–1771) Dioptricae, 3 vols. တမ်းပလိတ်:Webarchive – digital facsimile from the Linda Hall Library
- ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedpronun - ↑ ၂.၀ ၂.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedfunction - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedeulerarch - ↑ ၄.၀ ၄.၁ ၄.၂ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedvolumes - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedLaplace - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedlibri - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedchildhood - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs named17cent - ↑ ၉.၀ ၉.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedprize - ↑ Ronald Calinger. Leonhard Euler: The First St. Petersburg Years (1727-1741). Historia Mathematica 23, 2 (1996), 121-166, read online
- ↑ တမ်းပလိတ်:Cite web
- ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedstpetersburg - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedmedic - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedpromotion - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedgekker - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedwife - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs nameddartm - ↑ ၁၈.၀ ၁၈.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedFriedrich - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedDigital Copy of "Letters to a German Princess" - ↑ Euler's Gem: The Polyhedron Formula and the Birth of Topology - David S. Richeson - Google Books
- ↑ Gindikin, S.G., Гиндикин С. Г., МЦНМО, НМУ, 2001, с. 217.
- ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedgekker2 - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedAAAS - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedeuler - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namednovaacta - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedderbysh - ↑ ၂၇.၀ ၂၇.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedBoyer - ↑ တမ်းပလိတ်:Cite web
- ↑ ၂၉.၀ ၂၉.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedBasel - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedFeynman - ↑ ၃၁.၀ ၃၁.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedMathInt - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedanalysis - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namednumbertheory - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedcaldwell - ↑ ၃၅.၀ ၃၅.၁ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedbridge - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedcromw - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedgibbons - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedCauchy - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedLhuillier - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedyousch - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedoptics - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedeuler2 - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedSIAM - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs namedtheology - ↑ ကိုးကား အမှား - Invalid
<ref>tag; no text was provided for refs nameddartm2